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Abstract

Homocysteine, a sulfur-containing amino acid, has long been studied as a potential risk factor for cardiovascular
disease. While initial studies found strong correlations between elevated serum homocysteine concentrations and
cardiovascular events, interventional trials aimed at reducing its levels through vitamin B supplementation failed to
demonstrate improved outcomes. In this review, we highlight the experimental studies demonstrating
homocysteine’s effects on oxidative stress, immune activation, and endothelial dysfunction, all of which are key
contributors to atherogenesis. We also emphasize homocysteine’s interactions with other risk factors and its
reinterpretation as a biomarker of vascular diseases rather than a direct therapeutic target. Importantly, incorporation
of homocysteine measurement into broader cardiovascular risk profiles may improve risk prediction, particularly in
patients with concomitant metabolic or inflammatory conditions. Thus, evidence on the impact of anti-
inflammatory and antioxidant strategies on homocysteine-related pathways is also explored. In this manner, we
suggest that homocysteine’s clinical utility lies in its ability to signal underlying inflammatory and oxidative stress.
Future research should prioritize modulation of downstream oxidative and inflammatory pathways rather than
isolated homocysteine reduction
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Introduction

Cardiovascular disease (CVD) remains the leading cause of death worldwide, caused partly by
chronic systemic inflammation and endothelial dysfunction (1). In addition to well-established
risk factors like hypertension, hyperlipidemia, and smoking, there is growing interest in
identifying nontraditional biomarkers that have the potential to provide deeper insights into and
alter the management of vascular pathologies. One of these biomarkers is homocysteine, a
sulfur-containing amino acid involved in methionine metabolism. Although homocysteine has
been extensively studied, it remains a controversial biomarker in vascular disease, and it is still
unclear whether it acts as a causal driver or merely as a bystander reflecting vascular stress.

Epidemiological studies from the late 20th century initially linked elevated plasma homocysteine
levels with increased risks of myocardial infarction, stroke, and peripheral vascular disease (2,
3). This raised the question of whether homocysteine might be a causal factor in atherosclerosis,
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acting through mechanisms such as oxidative stress, reduced nitric oxide bioavailability, and

vascular inflammation. (4, 5) However, subsequent studies dampened this enthusiasm after
revealing that vitamin supplementation (B6, B9, B12) lowered homocysteine levels without
producing substantial improvements in cardiovascular outcomes (6, 7). Nevertheless, considering
homocysteine as a biochemical marker of endothelial stress and inflammation, instead of a
standalone therapeutic target reignited interest in homocysteine’s effect on vascular disease and
treatment. Studies continue to demonstrate its capacity to promote vascular dysfunction (8) while
emerging strategies focus more on mitigating its downstream effects like oxidative damage and
immune activation instead of lowering homocysteine itself (9).

This review revisits homocysteine’s role in cardiovascular disease with an emphasis on its pro-
inflammatory mechanisms and the clinical significance of modifying the homocysteine-
inflammation pathway. By examining both historical and recent evidence, we aim to clarify
homocysteine’s role in CVD pathophysiology and to assess its relevance within the context of
current anti-inflammatory cardiovascular therapies.

Methodology of Literature Search

This article is designed as a narrative review aiming to synthesize current evidence on the
biochemical, experimental, and clinical aspects of homocysteine in cardiovascular disease. A
comprehensive, non-systematic literature search was conducted in PubMed, Scopus, and Google
Scholar databases to identify relevant publications between January 1990 and September 2025.
The search strategy combined the following key terms: “homocysteine” AND (“inflammation”
OR “oxidative stress” OR “atherosclerosis” OR “cardiovascular disease™).

Both basic science (in vitro and in vivo) and clinical studies were included to ensure mechanistic
and translational coverage. Additional references were identified through backward citation
tracking of the included papers.

Selection of the studies was based on relevance, methodological quality, and contribution to
current understanding of homocysteine-related inflammatory and oxidative pathways.

Homocysteine: Biochemistry and Metabolism:

Homocysteine is an amino acid that plays an important part in the methionine cycle. It is
produced when methionine, an essential amino acid found in sources like red meat, fish, and
dairy products is demethylated. This multi-step process is where methionine is first converted to
S-adenosylmethionine (SAM). SAM then transfers a methyl group, becoming S-
adenosylhomocysteine (SAH). The SAM: SAH ratio is a crucial indicator of the cell’s
methylation capacity. An imbalance in this ratio can affect DNA methylation and other
methylation-dependent processes (10).

Homocysteine accumulation normally does not occur in healthy individuals since it is processed
through two major pathways: remethylation and transsulfuration. In the remethylation pathway,
homocysteine is converted back to methionine with the help of the enzyme methionine synthase,
which needs vitamin B12 (cobalamine) and vitamin B9 (folate) as cofactors. Another important
enzyme in this pathway is methylenetetrahydrofolate reductase (MTHFR) (11). This enzyme
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converts 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate which is the form of folate

used for the remethylation.

The transsulfuration pathway converts homocysteine into cystathionine and further to cysteine,
with cystathionine -synthase and cystathionase enzymes respectively. This pathway depends on
vitamin B6 (pyridoxine) as a cofactor. Glutathione, an important intracellular antioxidant, is also
generated from this pathway through cysteine, signifying the pathway’s importance in limiting
the body’s ability to neutralize free radicals.

Disruptions in either pathway can lead to hyperhomocysteinemia, a condition caused by elevated
homocysteine levels in plasma. This is most importantly caused by nutritional deficiencies of
folate, B6 or B12. Other factors include renal impairments, aging, alcohol consumption,
hypothyroidism, and medications like methotrexate and antiepileptic drugs. The genetic mutation
of methylenetetrahydrofolate reductase (MTHFR) can also play a part in this serum imbalance
(9). While homocysteine does not play a part in the protein production itself, its accumulation
can cause devastating effects on various cellular processes, the main one being oxidative stress.
Homocysteine auto-oxidizes in plasma, producing reactive oxygen species (ROS) that have the
potential to damage endothelial cells, oxidize lipoproteins, and initiate inflammatory signaling.
This imbalance is one of the earliest pathophysiological events observed in homocysteine-related
vascular disease (10).

Homocysteine thiolactone which is one of the byproducts of this auto-oxidation process, is
especially destructive in the condition of homocysteinemia. In normal serum homocysteine
levels, its production is low. However, in hyperhomocysteinemic states, it can acylate lysine
residues on proteins and low-density lipoproteins (LDL) in a process called protein
homocysteinylation (10). Additionally, homocysteine thiolactone has been shown to trigger
apoptosis in endothelial cells through a caspase-independent mechanism (11).

These various reactive oxygen species produced by homocysteine are also associated with
decreased endothelial nitric oxide through inhibition of endothelial nitric oxide synthase and
degradation of nitric oxide, causing vasoconstriction, platelet activation, and monocyte adhesion,
which is what is thought to be the culprit of homocysteine-induced vascular dysfunction and
consequently, atherosclerosis (12).

In summary, homocysteine is more than a passive metabolic intermediate. Its accumulation
reflects a disruption in various mechanisms vital to oxidative balance, endothelial function, and
inflammatory signaling. Understanding its biochemical effects is crucial for appreciating its
controversial but biologically plausible role in the development and progression of
cardiovascular diseases.

Mechanisms Linking Homocysteine to Inflammation:

Homocysteine has long been associated with vascular disease; however, the mechanistic links
between Hcy and inflammation have been clarified by biochemical, cellular, and animal studies.
(13). Homocysteine promotes inflammation through multiple, interconnected pathways involving
oxidative stress, endothelial function, and immune system activation that contribute to a pro-
atherogenic environment.
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Oxidative Stress and Redox Imbalance

When present in elevated concentrations, homocysteine is highly prone to auto-oxidation in
plasma. This then leads to the generation of reactive oxygen species (ROS) like superoxide
anions and hydrogen peroxide. These ROS can damage lipids, proteins, and DNA. They also
stimulate redox-sensitive transcription factors like NF-xB, which regulate the expression of pro-
inflammatory cytokines like interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-a), and
monocyte chemoattractant protein-1 (MCP-1) (14, 15). Several studies have demonstrated that
oxidative stress generated by homocysteine precedes detectable inflammation in endothelial and
vascular tissues (16,17).

Endothelial Dysfunction

The vascular endothelium is both a barrier and an active regulator of inflammation and
homocysteine was found to induce endothelial dysfunction through various pathways (18).
Homocysteine reduces the bioavailability of nitric oxide (NO), a potent vasodilator and anti-
inflammatory molecule, consequently impairing endothelial function. This process occurs
through various mechanisms: inhibition of endothelial nitric oxide synthase (eNOS) (18),
increased degradation of NO by superoxide radicals, and upregulation of asymmetric
dimethylarginine (ADMA), an endogenous inhibitor of NO synthesis (19). These changes
promote a pro-inflammatory state in the endothelium, indicated by increased expression of
adhesion molecules (VCAM-1, ICAM-1 eg.) that facilitate leukocyte adhesion and
transmigration (20) (Figure 1). Evidence from various studies confirms that homocysteine
exposure increases endothelial permeability and monocyte recruitment in vitro and in vivo (21,
22).

Oxidative stressT NO Oxidative stress T

T pro-inflammatory state T B2-integrin-expression
Lvasodllaltlon . Tendothelial permeability
Texpression of adhesion Tmonocytic transmigration
molecules (ICAM-1, VCAM-1 etc.) Tsubintimal accumulation
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Figure 1. Endothelial dysfunction in hyperhomocysteinemia: Increased oxidative stress reduces nitric oxide
(NO) bioavailability, upregulates adhesion molecules (ICAM-1, VCAM-1, P-selectin), and activates NF-xB

signaling. These changes enhance cytokine release (IL-6, TNF-a, MCP-1), increase f2-integrin expression, and
promote monocyte adhesion and transmigration, contributing to vascular inflammation and atherogenesis. *NO,

nitric oxide; ICAM-1, intercellular adhesion molecule-1; VCAM-1, vascular cell adhesion molecule-1; NF-xB, nuclear
factor kappa B; IL-6, interleukin-6; TNF-a, tumor necrosis factor-alpha; MCP-1, monocyte chemoattractant protein-1.
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Immune Activation and Cytokine Signaling

Homocysteine also modulates cell behavior in addition to its effects on redox balance and
vascular tone. It activates both innate and adaptive immune cells via multiple pro-inflammatory
pathways. In macrophages, it stimulates the production of neopterin, a marker of cellular
immune activation, mediated by interferon-y signaling (23). Whereas in the adaptive arm,
homocysteine promotes the differentiation of naive CD4 T cells into T-helper 17 (Th17) cells by
upregulating transcription factors such as RAR-related orphan nuclear receptor gamma t (RORyt)
and enhancing IL-17 secretion (24). The immune effects of these processes create an
inflammatory environment, contributing to vascular injury and supporting the development of
atherosclerotic lesions. Moreover, homocysteine thiolactone can homocysteinylate proteins and
make them immunologic, triggering autoimmune responses (10).

Crosstalk with Other Risk Factors

Homocysteine often acts synergistically with other cardiovascular risk factors such as
hyperlipidemia, hypertension, metabolic syndrome, and gene polymorphisms (25-28). For
example, homocysteine has been shown to enhance low-density lipoprotein (LDL) oxidation
which is a key step in foam cell formation and early plague development (29). This emphasizes
the importance of homocysteine not only as a lone participant but as a disease amplifier in the
context of systemic inflammation.

Homocysteine in Cardiovascular Disease:

There has been extensive research on the role of homocysteine on cardiovascular disease (CVD),
including coronary artery disease (CAD), stroke, and peripheral artery disease as a potential
biomarker and mediator (30, 31). Its relevance was first established through epidemiologic
studies that associated elevated plasma homocysteine levels with increased cardiovascular risk
(2, 5, 32). Clinical trials attempting to lower homocysteine levels through vitamin
supplementation, however, have yielded mixed results, opening up the debate about its causal
role (6, 7).

Epidemiological Evidence

Early observational studies showed a strong correlation between serum homocysteine levels and
cardiovascular events (2, 33). For instance, patients who were in the highest homocysteine
quartile were shown to have a 2-to-3-fold increased risk of myocardial infarction and stroke (3,
34). These findings suggested that homocysteine could be proposed as an independent risk
factor. Some studies also noted homocysteine’s correlation with arterial stiffness and carotid
intima-media thickness which are the surrogate markers for subclinical atherosclerosis (35, 36).

Recent cohort studies and meta-analyses continue to support a positive correlation between
elevated serum homocysteine levels and cardiovascular outcomes. Even slight increases in
plasma homocysteine have been linked with increased coronary heart disease, showing a dose-
dependent relationship (37). Similarly, in cerebrovascular disease, increased homocysteine levels
have been associated with both stroke and ischemic stroke (38). New studies also suggest a
specific relationship between homocysteine and large artery atherosclerotic stroke (39),
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reinforcing homocysteine’s relevance as a predictive biomarker across multiple forms of

cardiovascular disease.
Mechanistic Support from Experimental Studies

While the clinical and observational studies were at the forefront of the inflammatory effects of
homocysteine, experimental studies have also played an important role in demonstrating the
mechanisms behind these processes. In vitro, studies have shown that homocysteine promotes
extracellular matrix remodeling and vascular smooth muscle cell proliferation that contribute to
plaque formation and vessel wall thickening. These effects seem to be mediated by enzymes
involved in vascular remodeling called matrix metalloproteinases (MMPSs) (40). Animal models
of hyperhomocysteinemia also support homocysteine’s pathogenic role. Various studies showed
that mice with elevated homocysteine levels develop intimal hyperplasia, arterial stiffness, and
increased expression of vascular adhesion molecules (41, 42). Some recent studies have also
reported structural disruptions in the arterial wall such as elastin fragmentation and smooth
muscle cell disorganization (43, 44). Some studies revealed that homocysteine thiolactone, one
of the auto-oxidation products of homocysteine that we’ve discussed before, has been shown to
form in endothelial cells and modify vascular proteins in a way that compromises their structure
and function. These modifications take part in the early pathogenesis of atherosclerosis, causing
endothelial dysfunction, supporting the view that homocysteine actively alters the vascular
environment to promote disease progression (45, 46).

Intervention Trials and Controversy

Despite strong observational and mechanistic support, randomized controlled trials that tried to
show that reducing homocysteine levels would improve cardiovascular outcomes have failed to
do so (47). Several large studies, including the HOPE-2 and NORVIT trials, investigated
whether vitamin B6, vitamin B9, and B12 supplementation could reduce cardiovascular risk by
reducing serum homocysteine levels (6, 7). Even though these supplementations lowered
homocysteine levels, they did not meaningfully affect event rates. These findings led to
skepticism regarding homocysteine’s causal role and raised the thought that homocysteine might
be functioning more as a marker of vascular injury than a direct target.

Lessons from HOPE-2 and NORVIT

The skepticism surrounding homocysteine’s causal role stemmed from various studies, and two
of those are HOPE-2 and NORVIT trials. They are both large and well-dxesigned studies, that
sought to determine whether vitamin B6, vitamin B9, and vitamin B12 supplementation could
reduce cardiovascular event rates in high-risk populations.

Over 5.500 patients participated in the HOPE-2 trial. Participants had risk factors of vascular
disease or diabetes and were randomized to receive vitamin-B supplementation or placebo. Even
though supplementation led to a ~25% reduction in homocysteine levels, it did not produce a
significant reduction in myocardial infarction, stroke, or cardiovascular death rates. Possible
explanations for this result might include the high prevalence of concurrent therapies (such as
statins and ACE inhibitors), the rate of folate food fortification in participant countries, and
revised estimates suggesting that homocysteine-lowering might only return small cardiovascular
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benefits. These findings support the growing idea that homocysteine might act more as a marker

for vascular disease than a modifiable therapeutic target (6).

Similarly, the NORVIT trial evaluated more than 3.700 patients shortly after acute MI. They
found that despite lowering homocysteine levels by nearly 28%, B-vitamin therapy did not
reduce event rates. More interestingly, the group receiving all three vitamins had a slightly
increased risk of adverse events, more particularly stroke and unstable angina. These results
raised some concerns about the potential adverse effects of high-dose vitamin supplementation.
It also highlighted the complex role of homocysteine in vascular disease (7).

Together, HOPE-2 and NORVIT reflect the contradictory state between epidemiologic
associations and interventional outcomes. This reinforces the idea that while homocysteine
remains a relevant biomarker, its role in cardiovascular pathology as a causal agent is far from
definitive.

Reinterpretation in Light of Inflammatory Context

More recent interpretations suggest that there might be a deeper complexity behind the failure of
these supplementation trials. Homocysteine may not be a primary cause of atherosclerosis but a
modulator of inflammatory and oxidative pathways that are already active in high-risk
individuals (48, 49). Homocysteine’s role might be particularly relevant in subgroups with
systemic inflammation, impaired renal function, or genetic polymorphisms (e.g., MTHFR
mutation). These populations that were often underrepresented in earlier trials might give us a
better idea on homocysteine’s role in vascular disease (50-52).

Homocysteine as a Risk Marker in Practice

While current clinical guidelines no longer recommend routine screening for homocysteine in the
general population (53) it continues to be of interest in research and specific clinical scenarios
(54-56). Homocysteine may additionally serve as a complementary marker in individuals with
premature vascular disease, unclear risk profiles, or those with high oxidative or inflammatory
burden (57, 58). Various studies have also explored whether homocysteine could help reclassify
patients in intermediate-risk categories (59, 60).

Anti-Inflammatory Therapies and Their Impact on Homocysteine:

When considering the overlapping roles of inflammation and endothelial dysfunction in
cardiovascular disease, therapies targeting inflammatory pathways have cultivated substantial
interest (61, 62). While homocysteine is not typically the target of these treatments, its
interactions with inflammation could suggest that anti-inflammatory agents might indirectly
modulate its effects or plasma levels (63, 64). This section explores how commonly used
pharmacologic and nutritional anti-inflammatory strategies affect homocysteine metabolism and
function.

Corticosteroids and Immunomodulators

Corticosteroids are a class of hormones that can be used as strong anti-inflammatory agents
across a wide range of conditions, including dermatologic or autoimmune diseases. However,
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their effects on homocysteine remain uncertain. Some studies have reported elevated

homocysteine levels in patients who have endogenous corticosteroid production or undergoing
chronic corticosteroid therapy, contributing to the increased cardiovascular risk in these patients
(65,66). Contrarily, corticosteroids’ ability to reduce systemic inflammation including I1L6 (67)
might dampen downstream vascular consequences (68) associated with hyperhomocysteinemia
(69). This dual effect underlines the complexity of interpreting homocysteine levels in
inflammatory disease settings.

Statins

Statins are a class of lipid-lowering medications that inhibit HMG-CoA reductase which is a
rate-limiting enzyme in cholesterol biosynthesis. They are widely used to prevent and manage
cardiovascular diseases by decreasing low-density lipoprotein (LDL) levels. Beyond their lipid-
lowering properties, statins have pleiotropic effects which include anti-inflammatory and
endothelial stabilizing properties (70, 71). Statins were found to reduce CRP levels
independently of LDL (70,72) and have been shown to improve endothelial function in patients
with elevated serum homocysteine (73, 74). Even though some earlier studies suggested that
statin may reduce homocysteine concentrations only modestly with unclear clinical significance
(75), the more recent meta-analyses have demonstrated that statin therapy produced a statistically
and clinically meaningful reduction in homocysteine concentrations (76, 77). Notably, evidence
from the PROSPER trial indicates that statins provide cardiovascular benefits in patients with
elevated serum homocysteine levels, even when homocysteine levels remain unchanged. In a
post hoc analysis, participants with the highest baseline homocysteine had the greatest absolute
risk reduction in coronary heart disease events when treated with pravastatin (78). These findings
hint that the protective effects of statins in cardiovascular diseases might arise through
mechanisms unrelated to homocysteine metabolism and mechanism, such as inflammation
modulation and endothelial stabilization.

Vitamin B Supplementation

The vitamin B family, including B6, B9, and B12—on which homocysteine metabolism heavily
relies—has been central to trials attempting to lower homocysteine levels (79,80). While
supplementation reliably reduces plasma homocysteine concentrations, most large-scale trials
have failed to demonstrate cardiovascular benefit, as discussed in Lessons from HOPE-2 and
NORVIT section (6, 7). B-vitamin therapy may also lack efficacy in reducing inflammation
itself, limiting its therapeutic value in inflammatory vascular disease. In patients with peripheral
arterial occlusive disease, while vitamin supplementation significantly reduced homocysteine
levels, it had no impact on key inflammatory markers such as CRP, IL-6, or MCP-1 (81).
However, in some subpopulations such as those with severe deficiencies or high baseline
homocysteine levels, benefits may still exist (82, 83).

Dietary Interventions and Antioxidants

Dietary strategies rich in anti-inflammatory nutrients like the Mediterranean diet have been
associated with lower homocysteine levels and reduced cardiovascular risk (84-86). Higher
dietary intake of B-vitamins like folate and vitamin B6 has been linked with improved
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homocysteine metabolism and reduced cardiovascular risk (87). Additionally, diets rich in

antioxidants like vitamin C, vitamin E, and polyphenols might help counteract the oxidative
effects of homocysteine (88), even without lowering its plasma concentration (89) Studies like
the ATTICA epidemiologic study suggests that dietary indices like the Food Compass Score
(FCS) may be inversely related to both inflammatory biomarkers and homocysteine levels (90).

Insights from the ATTICA Study

The ATTICA epidemiologic study provides valuable information on the connection between
diet, homocysteine levels, and cardiovascular risk factors in a general population. This broad
study conducted in Greece has investigated various nutritional and inflammatory parameters
among its participants (91). One analysis from the ATTICA cohort identified that greater
adherence to the Mediterranean diet was inversely related to serum homocysteine levels and was
associated with reduced 5-year incidence of cardiovascular disease (92). These findings
strengthen the idea that anti-inflammatory dietary strategies may lower both homocysteine levels
and cardiovascular risk. Other findings from ATTICA have demonstrated that high-density
lipoprotein (HDL) which is a protective lipid marker is inversely related to both CRP and
homocysteine levels, highlighting the interconnection between lipid metabolism, inflammation,
and homocysteine in the pathogenesis of cardiovascular disease (93). These studies, together,
underline the role of diet content and quality in modulating both traditional and emerging
cardiovascular risk factors. Consequently, they proved a robust epidemiologic basis for dietary
recommendations aimed at reducing homocysteine and inflammation-related vascular damage.

Taken all these together, Table 1 summarizes homocysteine’s metabolic routes and highlights
mechanistic links to vascular injury described in this review (Table 1).

Table 1. Homocysteine metabolism and pathophysiologic processes.
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Abbreviations: ADMA, asymmetric dimethyl-L-arginine; BH4, tetrahydrobiopterin; CAD, coronary artery disease; ECM, extracellular matrix; eNOS,
endothelial nitric oxide synthase; GSH, reduced glutathione; Hcy, homocysteine; IL-6, interleukin-6; LDL, low-density lipoprotein; MCP-1, monocyte
chemoattractant protein-1; MMP, matrix metalloproteinase; MTHFR, methylenetetrahydrofolate reductase; NF-kB, nuclear factor kappa B; NO, nitric
oxide; PAD, peripheral artery disease; RORyt, RAR-related orphan receptor gamma t; ROS, reactive oxygen species; SAH, S-adenosylhomocysteineg;
SAM, S-adenosylmethionine; STAT3, signal transducer and activator of transcription 3; TNF-a, tumor necrosis factor
alpha.

Targeting Downstream Effects

Since there was limited cardiovascular benefit in homocysteine-lowering trials (94), attention has
turned towards mitigating homocysteine’s downstream vascular effects like ROS generation,
protein homocysteinylation, and endothelial dysfunction (88,89, 95). Therapies that help enhance
nitric oxide bioavailability (96), protect mitochondrial function (97), or inhibit NF-xB (98) seem
to be promising. While such strategies are not yet in routine clinical use, they indicate a broader
shift toward targeting disease mechanisms rather than isolated biomarkers.

Recent studies indicate that Hcy contributes to oxidative stress, mitochondrial dysfunction, and
endothelial injury beyond its role as a biomarker. In particular, a novel study highlighted that
targeting downstream pathways, such as enhancing hydrogen sulfide (H=S) bioavailability and
supporting transsulfuration metabolism, may mitigate these effects (97). However, it is crucial to
note that such interventions, including mitochondrial protection and nitric oxide enhancement,
remain largely preclinical, with limited clinical evidence of efficacy to date.

It is crucial to acknowledge that the majority of these interventions, such as NF-kB inhibition,
mitochondrial protection, and nitric oxide enhancement, are still in preclinical or early
translational phases, with scant evidence of clinical efficacy thus far.

Discussion and Future Directions

The role of homocysteine in cardiovascular disease remains incomplete despite years of research.
While early enthusiasm put homocysteine as a promising player in terms of therapeutic target,
subsequent clinical trials, particularly after B-vitamin supplementation failed to produce
meaningful effects in cardiovascular events (6,7), tempered expectations. However, growing
recognition that homocysteine might be more of a marker of inflammatory and endothelial stress
rather than the sole causal agent helped reevaluate its relevance in modern cardiovascular
medicine (31,32). Consistent with our main thesis, homocysteine should be interpreted primarily
as a marker of endothelial and inflammatory stress rather than a direct therapeutic target. Clinical
management should therefore focus on modulating the downstream oxidative and inflammatory
cascades it represents.

This review highlights the intricate relationship between homocysteine, vascular inflammation,
and cardiovascular pathology. Experimental studies demonstrate that homocysteine exerts pro-
inflammatory effects through oxidative stress, endothelial injury, and immune modulation (24,
41, 47). These effects of homocysteine might be especially pronounced and relevant in certain
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populations like those with chronic kidney disease or genetic polymorphisms (52, 53). Various

studies also suggest that homocysteine does not act in isolation, but interacts synergistically with
other risk factors, amplifying vascular injury (26-28).

A key limitation of earlier intervention trials could have been their narrow focus on
homocysteine concentrations and basing the therapeutic effect on lowering homocysteine itself
rather than its downstream biological effects. Future therapies might be more effective if they
target these downstream effects (64, 75). Approaches that focus on enhancing nitric oxide
bioavailability (96), protecting mitochondrial function (97), or inhibiting NF-xB (98) may offer
novel strategies to mitigate homocysteine’s impact without requiring its direct reduction in
plasma.

Another underexplored area seems to be the heterogeneity of patient response. Stratified
approaches based on baseline inflammation, comorbid conditions, or genetic background may
reveal subsets of patients who are more likely to benefit from homocysteine-lowering strategies
(52, 53). Additionally, combining homocysteine with other biomarkers might enhance mortality
risk stratification and inform treatment decisions in individuals with peripheral arterial disease
(PAD) (99,100).

From a research standpoint, further studies are needed to:
. Clarify homocysteine’s role as a marker versus mediator by means of prospective trials

. Assess the temporal relationship between homocysteine and inflammation via longitudinal
human cohort studies

. Explore the anti-inflammatory therapies’ influence on homocysteine’s vascular effects
without altering homocysteine’s plasma concentration

. Analyze the place of homocysteine in cardiovascular risk stratification among multimarker
predictive models

To conclude, homocysteine’s role as an amplifier of vascular inflammation deserves renewed
focus, even if it is no longer considered a sole therapeutic target. In summary, targeting the
downstream inflammatory and oxidative consequences of homocysteine, rather than
homocysteine itself, may represent a more promising strategy for cardiovascular disease
prevention and treatment.
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