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Abstract 

Homocysteine, a sulfur-containing amino acid, has long been studied as a potential risk factor for cardiovascular 
disease. While initial studies found strong correlations between elevated serum homocysteine concentrations and 

cardiovascular events, interventional trials aimed at reducing its levels through vitamin B supplementation failed to 

demonstrate improved outcomes. In this review, we highlight the experimental studies demonstrating 

homocysteine’s effects on oxidative stress, immune activation, and endothelial dysfunction, all of which are key 
contributors to atherogenesis. We also emphasize homocysteine’s interactions with other risk factors and its 

reinterpretation as a biomarker of vascular diseases rather than a direct therapeutic target. Importantly, incorporation 

of homocysteine measurement into broader cardiovascular risk profiles may improve risk prediction, particularly in 
patients with concomitant metabolic or inflammatory conditions. Thus, evidence on the impact of anti-

inflammatory and antioxidant strategies on homocysteine-related pathways is also explored. In this manner, we 

suggest that homocysteine’s clinical utility lies in its ability to signal underlying inflammatory and oxidative stress. 
Future research should prioritize modulation of downstream oxidative and inflammatory pathways rather than 

isolated homocysteine reduction 
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Introduction  

Cardiovascular disease (CVD) remains the leading cause of death worldwide, caused partly by 

chronic systemic inflammation and endothelial dysfunction (1). In addition to well-established 

risk factors like hypertension, hyperlipidemia, and smoking, there is growing interest in 

identifying nontraditional biomarkers that have the potential to provide deeper insights into and 

alter the management of vascular pathologies. One of these biomarkers is homocysteine, a 

sulfur-containing amino acid involved in methionine metabolism. Although homocysteine has 

been extensively studied, it remains a controversial biomarker in vascular disease, and it is still 

unclear whether it acts as a causal driver or merely as a bystander reflecting vascular stress. 

Epidemiological studies from the late 20th century initially linked elevated plasma homocysteine 

levels with increased risks of myocardial infarction, stroke, and peripheral vascular disease (2, 

3). This raised the question of whether homocysteine might be a causal factor in atherosclerosis, 
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acting through mechanisms such as oxidative stress, reduced nitric oxide bioavailability, and 

vascular inflammation. (4, 5) However, subsequent studies dampened this enthusiasm after 

revealing that vitamin supplementation (B6, B9, B12) lowered homocysteine levels without 

producing substantial improvements in cardiovascular outcomes (6, 7). Nevertheless, considering 

homocysteine as a biochemical marker of endothelial stress and inflammation, instead of a 

standalone therapeutic target reignited interest in homocysteine’s effect on vascular disease and 

treatment. Studies continue to demonstrate its capacity to promote vascular dysfunction (8) while 

emerging strategies focus more on mitigating its downstream effects like oxidative damage and 

immune activation instead of lowering homocysteine itself (9). 

This review revisits homocysteine’s role in cardiovascular disease with an emphasis on its pro-

inflammatory mechanisms and the clinical significance of modifying the homocysteine-

inflammation pathway. By examining both historical and recent evidence, we aim to clarify 

homocysteine’s role in CVD pathophysiology and to assess its relevance within the context of 

current anti-inflammatory cardiovascular therapies. 

Methodology of Literature Search 

This article is designed as a narrative review aiming to synthesize current evidence on the 

biochemical, experimental, and clinical aspects of homocysteine in cardiovascular disease. A 

comprehensive, non-systematic literature search was conducted in PubMed, Scopus, and Google 

Scholar databases to identify relevant publications between January 1990 and September 2025. 

The search strategy combined the following key terms: “homocysteine” AND (“inflammation” 

OR “oxidative stress” OR “atherosclerosis” OR “cardiovascular disease”). 

Both basic science (in vitro and in vivo) and clinical studies were included to ensure mechanistic 

and translational coverage.  Additional references were identified through backward citation 

tracking of the included papers. 

Selection of the studies was based on relevance, methodological quality, and contribution to 

current understanding of homocysteine-related inflammatory and oxidative pathways. 

Homocysteine: Biochemistry and Metabolism: 

Homocysteine is an amino acid that plays an important part in the methionine cycle. It is 

produced when methionine, an essential amino acid found in sources like red meat, fish, and 

dairy products is demethylated. This multi-step process is where methionine is first converted to 

S-adenosylmethionine (SAM). SAM then transfers a methyl group, becoming S-

adenosylhomocysteine (SAH). The SAM: SAH ratio is a crucial indicator of the cell’s 

methylation capacity. An imbalance in this ratio can affect DNA methylation and other 

methylation-dependent processes (10).  

Homocysteine accumulation normally does not occur in healthy individuals since it is processed 

through two major pathways: remethylation and transsulfuration. In the remethylation pathway, 

homocysteine is converted back to methionine with the help of the enzyme methionine synthase, 

which needs vitamin B12 (cobalamine) and vitamin B9 (folate) as cofactors. Another important 

enzyme in this pathway is methylenetetrahydrofolate reductase (MTHFR) (11). This enzyme 
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converts 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate which is the form of folate 

used for the remethylation. 

The transsulfuration pathway converts homocysteine into cystathionine and further to cysteine, 

with cystathionine β-synthase and cystathionase enzymes respectively. This pathway depends on 

vitamin B6 (pyridoxine) as a cofactor. Glutathione, an important intracellular antioxidant, is also 

generated from this pathway through cysteine, signifying the pathway’s importance in limiting 

the body’s ability to neutralize free radicals.  

Disruptions in either pathway can lead to hyperhomocysteinemia, a condition caused by elevated 

homocysteine levels in plasma. This is most importantly caused by nutritional deficiencies of 

folate, B6 or B12. Other factors include renal impairments, aging, alcohol consumption, 

hypothyroidism, and medications like methotrexate and antiepileptic drugs. The genetic mutation 

of methylenetetrahydrofolate reductase (MTHFR) can also play a part in this serum imbalance 

(9). While homocysteine does not play a part in the protein production itself, its accumulation 

can cause devastating effects on various cellular processes, the main one being oxidative stress. 

Homocysteine auto-oxidizes in plasma, producing reactive oxygen species (ROS) that have the 

potential to damage endothelial cells, oxidize lipoproteins, and initiate inflammatory signaling. 

This imbalance is one of the earliest pathophysiological events observed in homocysteine-related 

vascular disease (10). 

Homocysteine thiolactone which is one of the byproducts of this auto-oxidation process, is 

especially destructive in the condition of homocysteinemia. In normal serum homocysteine 

levels, its production is low. However, in hyperhomocysteinemic states, it can acylate lysine 

residues on proteins and low-density lipoproteins (LDL) in a process called protein 

homocysteinylation (10). Additionally, homocysteine thiolactone has been shown to trigger 

apoptosis in endothelial cells through a caspase-independent mechanism (11). 

These various reactive oxygen species produced by homocysteine are also associated with 

decreased endothelial nitric oxide through inhibition of endothelial nitric oxide synthase and 

degradation of nitric oxide, causing vasoconstriction, platelet activation, and monocyte adhesion, 

which is what is thought to be the culprit of homocysteine-induced vascular dysfunction and 

consequently, atherosclerosis (12). 

In summary, homocysteine is more than a passive metabolic intermediate. Its accumulation 

reflects a disruption in various mechanisms vital to oxidative balance, endothelial function, and 

inflammatory signaling. Understanding its biochemical effects is crucial for appreciating its 

controversial but biologically plausible role in the development and progression of 

cardiovascular diseases. 

Mechanisms Linking Homocysteine to Inflammation: 

Homocysteine has long been associated with vascular disease; however, the mechanistic links 

between Hcy and inflammation have been clarified by biochemical, cellular, and animal studies. 

(13). Homocysteine promotes inflammation through multiple, interconnected pathways involving 

oxidative stress, endothelial function, and immune system activation that contribute to a pro-

atherogenic environment. 
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Oxidative Stress and Redox Imbalance 

When present in elevated concentrations, homocysteine is highly prone to auto-oxidation in 

plasma. This then leads to the generation of reactive oxygen species (ROS) like superoxide 

anions and hydrogen peroxide. These ROS can damage lipids, proteins, and DNA. They also 

stimulate redox-sensitive transcription factors like NF-κB, which regulate the expression of pro-

inflammatory cytokines like interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and 

monocyte chemoattractant protein-1 (MCP-1) (14, 15). Several studies have demonstrated that 

oxidative stress generated by homocysteine precedes detectable inflammation in endothelial and 

vascular tissues (16,17).  

Endothelial Dysfunction 

The vascular endothelium is both a barrier and an active regulator of inflammation and 

homocysteine was found to induce endothelial dysfunction through various pathways (18). 

Homocysteine reduces the bioavailability of nitric oxide (NO), a potent vasodilator and anti-

inflammatory molecule, consequently impairing endothelial function. This process occurs 

through various mechanisms: inhibition of endothelial nitric oxide synthase (eNOS) (18), 

increased degradation of NO by superoxide radicals, and upregulation of asymmetric 

dimethylarginine (ADMA), an endogenous inhibitor of NO synthesis (19). These changes 

promote a pro-inflammatory state in the endothelium, indicated by increased expression of 

adhesion molecules (VCAM-1, ICAM-1 eg.) that facilitate leukocyte adhesion and 

transmigration (20) (Figure 1). Evidence from various studies confirms that homocysteine 

exposure increases endothelial permeability and monocyte recruitment in vitro and in vivo (21, 

22). 

 
Figure 1. Endothelial dysfunction in hyperhomocysteinemia: Increased oxidative stress reduces nitric oxide 
(NO) bioavailability, upregulates adhesion molecules (ICAM-1, VCAM-1, P-selectin), and activates NF-κB 

signaling. These changes enhance cytokine release (IL-6, TNF-α, MCP-1), increase β2-integrin expression, and 

promote monocyte adhesion and transmigration, contributing to vascular inflammation and atherogenesis. *NO, 

nitric oxide; ICAM-1, intercellular adhesion molecule-1; VCAM-1, vascular cell adhesion molecule-1; NF-κB, nuclear 

factor kappa B; IL-6, interleukin-6; TNF-α, tumor necrosis factor-alpha; MCP-1, monocyte chemoattractant protein-1. 
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Immune Activation and Cytokine Signaling 

Homocysteine also modulates cell behavior in addition to its effects on redox balance and 

vascular tone. It activates both innate and adaptive immune cells via multiple pro-inflammatory 

pathways. In macrophages, it stimulates the production of neopterin, a marker of cellular 

immune activation, mediated by interferon-γ signaling (23). Whereas in the adaptive arm, 

homocysteine promotes the differentiation of naïve CD4 T cells into T-helper 17 (Th17) cells by 

upregulating transcription factors such as RAR-related orphan nuclear receptor gamma t (RORγt) 

and enhancing IL-17 secretion (24). The immune effects of these processes create an 

inflammatory environment, contributing to vascular injury and supporting the development of 

atherosclerotic lesions. Moreover, homocysteine thiolactone can homocysteinylate proteins and 

make them immunologic, triggering autoimmune responses (10). 

Crosstalk with Other Risk Factors 

Homocysteine often acts synergistically with other cardiovascular risk factors such as 

hyperlipidemia, hypertension, metabolic syndrome, and gene polymorphisms (25-28). For 

example, homocysteine has been shown to enhance low-density lipoprotein (LDL) oxidation 

which is a key step in foam cell formation and early plaque development (29). This emphasizes 

the importance of homocysteine not only as a lone participant but as a disease amplifier in the 

context of systemic inflammation. 

Homocysteine in Cardiovascular Disease: 

There has been extensive research on the role of homocysteine on cardiovascular disease (CVD), 

including coronary artery disease (CAD), stroke, and peripheral artery disease as a potential 

biomarker and mediator (30, 31). Its relevance was first established through epidemiologic 

studies that associated elevated plasma homocysteine levels with increased cardiovascular risk 

(2, 5, 32). Clinical trials attempting to lower homocysteine levels through vitamin 

supplementation, however, have yielded mixed results, opening up the debate about its causal 

role (6, 7). 

Epidemiological Evidence 

Early observational studies showed a strong correlation between serum homocysteine levels and 

cardiovascular events (2, 33). For instance, patients who were in the highest homocysteine 

quartile were shown to have a 2-to-3-fold increased risk of myocardial infarction and stroke (3, 

34). These findings suggested that homocysteine could be proposed as an independent risk 

factor. Some studies also noted homocysteine’s correlation with arterial stiffness and carotid 

intima-media thickness which are the surrogate markers for subclinical atherosclerosis (35, 36). 

Recent cohort studies and meta-analyses continue to support a positive correlation between 

elevated serum homocysteine levels and cardiovascular outcomes. Even slight increases in 

plasma homocysteine have been linked with increased coronary heart disease, showing a dose-

dependent relationship (37). Similarly, in cerebrovascular disease, increased homocysteine levels 

have been associated with both stroke and ischemic stroke (38). New studies also suggest a 

specific relationship between homocysteine and large artery atherosclerotic stroke (39), 
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reinforcing homocysteine’s relevance as a predictive biomarker across multiple forms of 

cardiovascular disease. 

Mechanistic Support from Experimental Studies 

While the clinical and observational studies were at the forefront of the inflammatory effects of 

homocysteine, experimental studies have also played an important role in demonstrating the 

mechanisms behind these processes. In vitro, studies have shown that homocysteine promotes 

extracellular matrix remodeling and vascular smooth muscle cell proliferation that contribute to 

plaque formation and vessel wall thickening. These effects seem to be mediated by enzymes 

involved in vascular remodeling called matrix metalloproteinases (MMPs) (40). Animal models 

of hyperhomocysteinemia also support homocysteine’s pathogenic role. Various studies showed 

that mice with elevated homocysteine levels develop intimal hyperplasia, arterial stiffness, and 

increased expression of vascular adhesion molecules (41, 42). Some recent studies have also 

reported structural disruptions in the arterial wall such as elastin fragmentation and smooth 

muscle cell disorganization (43, 44). Some studies revealed that homocysteine thiolactone, one 

of the auto-oxidation products of homocysteine that we’ve discussed before, has been shown to 

form in endothelial cells and modify vascular proteins in a way that compromises their structure 

and function. These modifications take part in the early pathogenesis of atherosclerosis, causing 

endothelial dysfunction, supporting the view that homocysteine actively alters the vascular 

environment to promote disease progression (45, 46). 

Intervention Trials and Controversy 

Despite strong observational and mechanistic support, randomized controlled trials that tried to 

show that reducing homocysteine levels would improve cardiovascular outcomes have failed to 

do so (47). Several large studies, including the HOPE-2 and NORVIT trials, investigated 

whether vitamin B6, vitamin B9, and B12 supplementation could reduce cardiovascular risk by 

reducing serum homocysteine levels (6, 7). Even though these supplementations lowered 

homocysteine levels, they did not meaningfully affect event rates. These findings led to 

skepticism regarding homocysteine’s causal role and raised the thought that homocysteine might 

be functioning more as a marker of vascular injury than a direct target. 

Lessons from HOPE-2 and NORVIT 

The skepticism surrounding homocysteine’s causal role stemmed from various studies, and two 

of those are HOPE-2 and NORVIT trials. They are both large and well-dxesigned studies, that 

sought to determine whether vitamin B6, vitamin B9, and vitamin B12 supplementation could 

reduce cardiovascular event rates in high-risk populations. 

Over 5.500 patients participated in the HOPE-2 trial. Participants had risk factors of vascular 

disease or diabetes and were randomized to receive vitamin-B supplementation or placebo. Even 

though supplementation led to a ~25% reduction in homocysteine levels, it did not produce a 

significant reduction in myocardial infarction, stroke, or cardiovascular death rates. Possible 

explanations for this result might include the high prevalence of concurrent therapies (such as 

statins and ACE inhibitors), the rate of folate food fortification in participant countries, and 

revised estimates suggesting that homocysteine-lowering might only return small cardiovascular 



 Review Article 

International Journal of Basic and Clinical Studies, Koçhan E. et all., 2025; 14(2): 1-21, 14201. 

 

7 

 

benefits. These findings support the growing idea that homocysteine might act more as a marker 

for vascular disease than a modifiable therapeutic target (6). 

Similarly, the NORVIT trial evaluated more than 3.700 patients shortly after acute MI. They 

found that despite lowering homocysteine levels by nearly 28%, B-vitamin therapy did not 

reduce event rates. More interestingly, the group receiving all three vitamins had a slightly 

increased risk of adverse events, more particularly stroke and unstable angina. These results 

raised some concerns about the potential adverse effects of high-dose vitamin supplementation. 

It also highlighted the complex role of homocysteine in vascular disease (7). 

Together, HOPE-2 and NORVIT reflect the contradictory state between epidemiologic 

associations and interventional outcomes. This reinforces the idea that while homocysteine 

remains a relevant biomarker, its role in cardiovascular pathology as a causal agent is far from 

definitive. 

Reinterpretation in Light of Inflammatory Context 

More recent interpretations suggest that there might be a deeper complexity behind the failure of 

these supplementation trials. Homocysteine may not be a primary cause of atherosclerosis but a 

modulator of inflammatory and oxidative pathways that are already active in high-risk 

individuals (48, 49). Homocysteine’s role might be particularly relevant in subgroups with 

systemic inflammation, impaired renal function, or genetic polymorphisms (e.g., MTHFR 

mutation). These populations that were often underrepresented in earlier trials might give us a 

better idea on homocysteine’s role in vascular disease (50-52). 

Homocysteine as a Risk Marker in Practice 

While current clinical guidelines no longer recommend routine screening for homocysteine in the 

general population (53) it continues to be of interest in research and specific clinical scenarios 

(54-56). Homocysteine may additionally serve as a complementary marker in individuals with 

premature vascular disease, unclear risk profiles, or those with high oxidative or inflammatory 

burden (57, 58). Various studies have also explored whether homocysteine could help reclassify 

patients in intermediate-risk categories (59, 60). 

Anti-Inflammatory Therapies and Their Impact on Homocysteine: 

When considering the overlapping roles of inflammation and endothelial dysfunction in 

cardiovascular disease, therapies targeting inflammatory pathways have cultivated substantial 

interest (61, 62). While homocysteine is not typically the target of these treatments, its 

interactions with inflammation could suggest that anti-inflammatory agents might indirectly 

modulate its effects or plasma levels (63, 64). This section explores how commonly used 

pharmacologic and nutritional anti-inflammatory strategies affect homocysteine metabolism and 

function. 

Corticosteroids and Immunomodulators 

Corticosteroids are a class of hormones that can be used as strong anti-inflammatory agents 

across a wide range of conditions, including dermatologic or autoimmune diseases. However, 
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their effects on homocysteine remain uncertain. Some studies have reported elevated 

homocysteine levels in patients who have endogenous corticosteroid production or undergoing 

chronic corticosteroid therapy, contributing to the increased cardiovascular risk in these patients 

(65,66).  Contrarily, corticosteroids’ ability to reduce systemic inflammation including IL6 (67) 

might dampen downstream vascular consequences (68) associated with hyperhomocysteinemia 

(69). This dual effect underlines the complexity of interpreting homocysteine levels in 

inflammatory disease settings. 

Statins 

Statins are a class of lipid-lowering medications that inhibit HMG-CoA reductase which is a 

rate-limiting enzyme in cholesterol biosynthesis. They are widely used to prevent and manage 

cardiovascular diseases by decreasing low-density lipoprotein (LDL) levels. Beyond their lipid-

lowering properties, statins have pleiotropic effects which include anti-inflammatory and 

endothelial stabilizing properties (70, 71). Statins were found to reduce CRP levels 

independently of LDL (70,72) and have been shown to improve endothelial function in patients 

with elevated serum homocysteine (73, 74). Even though some earlier studies suggested that 

statin may reduce homocysteine concentrations only modestly with unclear clinical significance 

(75), the more recent meta-analyses have demonstrated that statin therapy produced a statistically 

and clinically meaningful reduction in homocysteine concentrations (76, 77). Notably, evidence 

from the PROSPER trial indicates that statins provide cardiovascular benefits in patients with 

elevated serum homocysteine levels, even when homocysteine levels remain unchanged. In a 

post hoc analysis, participants with the highest baseline homocysteine had the greatest absolute 

risk reduction in coronary heart disease events when treated with pravastatin (78). These findings 

hint that the protective effects of statins in cardiovascular diseases might arise through 

mechanisms unrelated to homocysteine metabolism and mechanism, such as inflammation 

modulation and endothelial stabilization. 

Vitamin B Supplementation 

The vitamin B family, including B6, B9, and B12—on which homocysteine metabolism heavily 

relies—has been central to trials attempting to lower homocysteine levels (79,80). While 

supplementation reliably reduces plasma homocysteine concentrations, most large-scale trials 

have failed to demonstrate cardiovascular benefit, as discussed in Lessons from HOPE-2 and 

NORVIT section (6, 7). B-vitamin therapy may also lack efficacy in reducing inflammation 

itself, limiting its therapeutic value in inflammatory vascular disease. In patients with peripheral 

arterial occlusive disease, while vitamin supplementation significantly reduced homocysteine 

levels, it had no impact on key inflammatory markers such as CRP, IL-6, or MCP-1 (81). 

However, in some subpopulations such as those with severe deficiencies or high baseline 

homocysteine levels, benefits may still exist (82, 83).   

Dietary Interventions and Antioxidants 

Dietary strategies rich in anti-inflammatory nutrients like the Mediterranean diet have been 

associated with lower homocysteine levels and reduced cardiovascular risk (84-86). Higher 

dietary intake of B-vitamins like folate and vitamin B6 has been linked with improved 
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homocysteine metabolism and reduced cardiovascular risk (87). Additionally, diets rich in 

antioxidants like vitamin C, vitamin E, and polyphenols might help counteract the oxidative 

effects of homocysteine (88), even without lowering its plasma concentration (89) Studies like 

the ATTICA epidemiologic study suggests that dietary indices like the Food Compass Score 

(FCS) may be inversely related to both inflammatory biomarkers and homocysteine levels (90). 

Insights from the ATTICA Study 

The ATTICA epidemiologic study provides valuable information on the connection between 

diet, homocysteine levels, and cardiovascular risk factors in a general population. This broad 

study conducted in Greece has investigated various nutritional and inflammatory parameters 

among its participants (91). One analysis from the ATTICA cohort identified that greater 

adherence to the Mediterranean diet was inversely related to serum homocysteine levels and was 

associated with reduced 5-year incidence of cardiovascular disease (92). These findings 

strengthen the idea that anti-inflammatory dietary strategies may lower both homocysteine levels 

and cardiovascular risk. Other findings from ATTICA have demonstrated that high-density 

lipoprotein (HDL) which is a protective lipid marker is inversely related to both CRP and 

homocysteine levels, highlighting the interconnection between lipid metabolism, inflammation, 

and homocysteine in the pathogenesis of cardiovascular disease (93).  These studies, together, 

underline the role of diet content and quality in modulating both traditional and emerging 

cardiovascular risk factors. Consequently, they proved a robust epidemiologic basis for dietary 

recommendations aimed at reducing homocysteine and inflammation-related vascular damage. 

Taken all these together, Table 1 summarizes homocysteine’s metabolic routes and highlights 

mechanistic links to vascular injury described in this review (Table 1). 

Table 1. Homocysteine metabolism and pathophysiologic processes. 

 

Pathway Core Reaction Key 

Enzyme

(s) 

Cofactor(s

) 

Produc

t / 

Interm

ediate 

Biological 

Consequence 

Clinical Implication 

Methionin

e Cycle 

Methionine → 

S-
adenosylmethi

onine (SAM) 

→ S-
adenosylhomo

cysteine (SAH) 

→ 

Homocysteine; 
cellular 

methylation 

capacity 
reflected by 

SAM:SAH 

ratio10 

Methion

ine 
adenosy

ltransfer

ase; 
SAH 

hydrolas

e 

ATP SAM, 

SAH, 
Homoc

ysteine 

Governs 

methylation 
capacity 

(SAM:SAH)10 

DNA hypomethylation; 

epigenetic dysregulation 
10 

Remethyla Homocysteine- Methion Vitamin Methion Replenishes MTHFR variants or 
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tion Methionine11 ine 
synthase

; 

MTHFR
11 

B12 
(cobalamin

), Vitamin 

B9 
(folate)11 

ine methionine; 
sustains 

methylation 

reactions11 

folate/B12 deficiency- 
hyperhomocysteinemia9,1

1 

Transsulf

uration 

Homocysteine 

-Cystathionine 
- Cysteine 

Cystathi

onine β-
synthase 

(CBS); 

Cystathi

onase 

Vitamin 

B6 
(pyridoxin

e) 

Cystein

e; 
Glutathi

one 

(GSH) 

Supports 

antioxidant 
defense via 

GSH synthesis 

B6 deficiency -increased 

ROS and endothelial 
injury8,9 

 Auto-

oxidation 

& 

Derivative

s 

Homocysteine 

auto-oxidation 

- ROS and 
homocysteine 

thiolactone 

formation10 

Spontan

eous 

oxidatio
n 

Oxidizing 

milieu (O2) 

Superox

ide; 

H2O2; 
Homoc

ysteine 

thiolact

one10 

Protein N-

homocysteinyl

ation; 
oxidative 

stress; 

endothelial 

apoptosis 
(caspase-

independent)10,

11 

LDL modification; 

atherogenic 

remodeling30,45,46 

 Effects on 

NO 

Bioavailab

ility 

eNOS 

inhibition; 

↗ADMA; NO 
degradation18,19 

eNOS; 

pathway

s 
regulati

ng 

ADMA 

NADPH; 

BH4 

↙NO Vasoconstricti

on; platelet 

activation; 
leukocyte 

adhesion18-22 

Endothelial dysfunction; 

hypertension18-22 

 

Inflammat

ory 

Signaling 

NF-κB 
activation- 

↗ IL-6, TNF-α, 

MCP-114,15 

NF-κB; 
MAPK 

cascades 

ROS-
dependent 

Pro-
inflamm

atory 

cytokin
es 

Monocyte 
adhesion/trans

migration; 

vascular 
inflammation20

-22 

Plaque 
initiation/progression; 

↗endothelial 

permeability 20-22 

Immune 

Modulatio

n 

Th17 
polarization; 

↗RORγt; ↗ IL-

1724 

RORγt; 
STAT3 

axis 

--- IL-17 ↗  Skewing 
toward pro-

inflammatory 

adaptive 

responses24 

Inflammatory vascular 
milieu 10,24 

Oxidative-

Stress–

Mediated 

Vascular 

Injury 

ECM 

remodeling; 

elastin 
fragmentation; 

↗MMP 

activity39-43 

MMP-2; 

MMP-9 

Zn2+-

dependent 

proteases 

ECM 

degrada

tion 

Arterial 

stiffening; 

intimal 
thickening41-44 

Atherosclerosis 

progression; increased 

arterial stiffness41-44 

Antioxida

nt / Diet 

Link 

One-carbon 
vitamin 

balance; GSH 

synthesis; 
antioxidant 

nutrients84,87-90 

CBS; 
MS; 

MTHFR 

Folate, B6, 
B12; 

vitamins 

C/E; 
polyphenol

s85,88-91 

GSH; 
Methion

ine 

ROS 
buffering; 

redox 

homeostasis84,8

7-90 

Dietary insufficiency 
amplifies vascular injury 

risk84,87-90 

Clinical 

Biomarke

Elevated 
plasma 

--- --- --- Biochemical 
indicator of 

Associated with CAD, 
stroke, PAD; utility in 
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r Role homocysteine 
(total Hcy) 

associated with 

CVD 
phenotypes2,3,36

-40,60,61 

endothelial/infl
ammatory 

stress  

risk 
stratification/reclassificat

ion35-39,59,60 

Abbreviations: ADMA, asymmetric dimethyl-L-arginine; BH4, tetrahydrobiopterin; CAD, coronary artery disease; ECM, extracellular matrix; eNOS, 

endothelial nitric oxide synthase; GSH, reduced glutathione; Hcy, homocysteine; IL-6, interleukin-6; LDL, low-density lipoprotein; MCP-1, monocyte 

chemoattractant protein-1; MMP, matrix metalloproteinase; MTHFR, methylenetetrahydrofolate reductase; NF-κB, nuclear factor kappa B; NO, nitric 

oxide; PAD, peripheral artery disease; RORγt, RAR-related orphan receptor gamma t; ROS, reactive oxygen species; SAH, S-adenosylhomocysteine; 

SAM, S-adenosylmethionine; STAT3, signal transducer and activator of transcription 3; TNF-α, tumor necrosis factor 

alpha. 

Targeting Downstream Effects 

Since there was limited cardiovascular benefit in homocysteine-lowering trials (94), attention has 

turned towards mitigating homocysteine’s downstream vascular effects like ROS generation, 

protein homocysteinylation, and endothelial dysfunction (88,89, 95). Therapies that help enhance 

nitric oxide bioavailability (96), protect mitochondrial function (97), or inhibit NF-κB (98) seem 

to be promising. While such strategies are not yet in routine clinical use, they indicate a broader 

shift toward targeting disease mechanisms rather than isolated biomarkers.  

Recent studies indicate that Hcy contributes to oxidative stress, mitochondrial dysfunction, and 

endothelial injury beyond its role as a biomarker. In particular, a novel study highlighted that 

targeting downstream pathways, such as enhancing hydrogen sulfide (H₂S) bioavailability and 

supporting transsulfuration metabolism, may mitigate these effects (97). However, it is crucial to 

note that such interventions, including mitochondrial protection and nitric oxide enhancement, 

remain largely preclinical, with limited clinical evidence of efficacy to date. 

It is crucial to acknowledge that the majority of these interventions, such as NF-κB inhibition, 

mitochondrial protection, and nitric oxide enhancement, are still in preclinical or early 

translational phases, with scant evidence of clinical efficacy thus far. 

Discussion and Future Directions 

The role of homocysteine in cardiovascular disease remains incomplete despite years of research. 

While early enthusiasm put homocysteine as a promising player in terms of therapeutic target, 

subsequent clinical trials, particularly after B-vitamin supplementation failed to produce 

meaningful effects in cardiovascular events (6,7), tempered expectations. However, growing 

recognition that homocysteine might be more of a marker of inflammatory and endothelial stress 

rather than the sole causal agent helped reevaluate its relevance in modern cardiovascular 

medicine (31,32). Consistent with our main thesis, homocysteine should be interpreted primarily 

as a marker of endothelial and inflammatory stress rather than a direct therapeutic target. Clinical 

management should therefore focus on modulating the downstream oxidative and inflammatory 

cascades it represents. 

This review highlights the intricate relationship between homocysteine, vascular inflammation, 

and cardiovascular pathology. Experimental studies demonstrate that homocysteine exerts pro-

inflammatory effects through oxidative stress, endothelial injury, and immune modulation (24, 

41, 47). These effects of homocysteine might be especially pronounced and relevant in certain 
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populations like those with chronic kidney disease or genetic polymorphisms (52, 53). Various 

studies also suggest that homocysteine does not act in isolation, but interacts synergistically with 

other risk factors, amplifying vascular injury (26-28).  

A key limitation of earlier intervention trials could have been their narrow focus on 

homocysteine concentrations and basing the therapeutic effect on lowering homocysteine itself 

rather than its downstream biological effects. Future therapies might be more effective if they 

target these downstream effects (64, 75). Approaches that focus on enhancing nitric oxide 

bioavailability (96), protecting mitochondrial function (97), or inhibiting NF-κB (98) may offer 

novel strategies to mitigate homocysteine’s impact without requiring its direct reduction in 

plasma. 

Another underexplored area seems to be the heterogeneity of patient response. Stratified 

approaches based on baseline inflammation, comorbid conditions, or genetic background may 

reveal subsets of patients who are more likely to benefit from homocysteine-lowering strategies 

(52, 53). Additionally, combining homocysteine with other biomarkers might enhance mortality 

risk stratification and inform treatment decisions in individuals with peripheral arterial disease 

(PAD) (99,100). 

From a research standpoint, further studies are needed to: 

• Clarify homocysteine’s role as a marker versus mediator by means of prospective trials 

• Assess the temporal relationship between homocysteine and inflammation via longitudinal 

human cohort studies 

• Explore the anti-inflammatory therapies’ influence on homocysteine’s vascular effects 

without altering homocysteine’s plasma concentration 

• Analyze the place of homocysteine in cardiovascular risk stratification among multimarker 

predictive models 

To conclude, homocysteine’s role as an amplifier of vascular inflammation deserves renewed 

focus, even if it is no longer considered a sole therapeutic target. In summary, targeting the 

downstream inflammatory and oxidative consequences of homocysteine, rather than 

homocysteine itself, may represent a more promising strategy for cardiovascular disease 

prevention and treatment. 
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