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Abstract 
Estimation related to the parameters of reciprocal exponential distribution is discussed for 

progressively type-II censored samples. A maximum likelihood estimator for the parameters is 

developed. A simulation study is considered for different pattern of censoring. 

Here we have used the simulation algorithm given by Aggarwala (2001) to generate samples. 

Here we have specified the proportion of surviving units to be removed at five monitoring and 

censoring point. The percentages of removing units from the surviving units at five stages are 

increasing in pattern R1 while decreasing in pattern R2. In pattern R3, a conventional type- II 

censoring scheme is employed. 

Using the likelihood level r, the likelihood inequality can be solved in order to construct a 

likelihood interval for θ. From a graph of likelihood ratio= ˆ( ) / ( )L L  plotted against various 

values of θ, the likelihood interval for θ can be obtained for given level r, by drawing a horizontal 

line at ˆ( ) / ( )L L  =r and the corresponding likelihood interval will contain all values of θ below 

this line. For bootstrapping, we again have simulated 1000 samples using the value of ̂ as a true 
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value of θ and calculated ˆ ( )boot p for p = 0.025 and p = 0.975 to obtain the 95% confidence 

interval. 

Keywords: Reciprocal exponential distribution, progressive type-II censoring, maximum 

likelihood estimation, confidence interval. 

1.Introduction 
The times to the occurrences of events are termed as “lifetimes”.  i.e. the actual length of 

an individual is termed as lifetime. When we buy any item or device such as television, 

computer, electric bulb etc, we expect it to function properly for a reasonable period of 

time. i.e. we would like to know the average life or warranty period of an item. Thus 

reliability function is nothing but the survival function of an item. 

 

In a life testing experiment, items are subjected to test and failed times of items are 

observed. From practical point of view it is just not possible to examine the sample fully. 

A complete examination of a sample involves considerable amount of time and money. In 

addition one requires sufficient space for conducting the experiment. This further adds to 

the costs of life-test experiment. Hence on account of time and cost consideration a 

sample has to be truncated. Truncation of the sample is known as censoring. 

 

There are many types of censoring schemes, but type-I and type-II censoring schemes are 

generally used. If we terminate the experiment when a pre assigned time is observed, 

such an experiment is known as time censored sampling or Type-I censoring. This kind 

of censoring is used when cost of experiment increases heavily with time. In type-II 

censoring a life test is terminated as soon as fixed number if items (say r) have failed. 

Such an experiment is known as failure censored sampling which is related with very 

high cost sophisticated items such as color television tubes. 

 

Generally type-I and type-II censoring schemes do not allow removal of units at points 

other than the terminal point of experiment. A generalized censoring scheme, defined by 
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Cohen (1963) which is known as progressive type-II censoring scheme is described 

below. 

 

Before conducting, a life experiment the experimenter fixes a sample size n, a number of 

complete observation m and a censoring scheme (R1, R2, …… Rm),   n = im R  . The 

n units are placed on a life test. Immediately after first failure, R1 surviving units are 

randomly chosen and removed from the experiment. Then after second failure, R2 units 

are withdrawn and so on. The procedure is continued until all Rm remaining units are 

removed after this mth failure. 

 

If   R1 = R2 = …………= Rm = 0, then n = m which corresponds to complete sample.        

If R1 = R2 = …………=  Rm-1  = 0   them Rm = n – m corresponds to conventional type II 

right censoring scheme. 

 

Balakrishnan and Aggarwala (2000) has provided a comprehensive reference in the 

subject of progressive censoring, its application and techniques for analyzing data from 

the employment of progressive type II censoring schemes. 

 

In this paper we have considered reciprocal exponential distribution as a continuous 

lifetime model and apply progressively type-II censoring without changing the 

parameters at different stages of censoring. In section 2 the method of maximum 

likelihood estimation described. Simulation of progressive type-II censored samples is 

carried out in section 3. Section 4 deals with confidence interval under three different 

methods. The methods are illustrated using numerical examples for different censoring 

pattern.  
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1. Maximum Likelihood Estimation 

The probability density function and cumulative distribution function of a reciprocal 

exponential distribution with parameter θ is given by, 

2( ) , 0 ,  0             (2 .1 )

( )                                       (2 .2 )
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 Let n items are kept on test, then the likelihood function under Progressive type – II 

censoring scheme as discussed in section 1 is given by 
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The log likelihood function is given by, 
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Differentiating ln L with respect to θ and equating to zero we obtain, 
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Hence we obtain the maximum likelihood estimating equation as, 
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Using any iterative procedure like Newton Raphson method one can solve the equation 

(2.5) to obtain maximum likelihood estimator of θ, denoted by θ̂ . 

Now again differentiating (2.4) we get, 
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Hence observed asymptotic variance of ̂  is given by (Due to Cohen 1963) 
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2. Comparison of censoring patterns via simulation 

In this section considering the reciprocal exponential distribution defined in (2.1) as a life 

time model from which 1000 samples were generated using the value θ = 3, m = 5, 

sample size 20 and 50 for each of the following progressive type II censoring patterns 

 

            R1 :( 25%, 25%, 50%, 50%, 100%)  (ascending) 

            R2 :( 50%, 50%, 25%, 25%, 100%)   (descending) 

            R3 :( 0, 0, 0, 0, 100%).                        (regular type II) 

 

Here we have used the simulation algorithm given by Aggarwala (2001) to generate 

samples. Here we have specified the proportion of surviving units to be removed at five 

monitoring and censoring point. The percentages of removing units from the surviving 

units at five stages are increasing in pattern R1 while decreasing in pattern R2. In pattern 

R3, a conventional type- II censoring scheme is employed. 

 

The simulation scheme is as follows:- 

 
1) Generate Ui, where Ui is a set of random number i= 1, 2, 3, 4, 5 
 
2) ln  (1 )i iZ U    
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        ii.e. exp - /x  1- exp - iY   
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By solving the equation in step 4 we will get the values of xi. On the basis of simulated 

samples Maximum Likelihood estimates of θ as given in (2.5) along with its asymptotic 

variance as given in (2.7) with simulated variance are demonstrated in table 1. 

 

For n = 20 the three censoring patterns as discussed earlier the comes out as 

R1 :( 5, 3, 5, 2, 0)   

R2 :( 10, 4, 1, 0, 0)    

R3 :( 0, 0, 0, 0, 15).                         

 

Table-1 gives the summary statistics of the maximum likelihood estimators for the three 

censoring patterns; with its observed asymptotic variance and simulated variance, in case 

of 1000 random samples generated for n = 20, θ = 3, m= 5 

 

Table-1 

 

 

 

 

 

 

 

From the result of table 1 we observe that the censoring pattern R3 produces the most 

precise estimate of θ followed by R1 and then R2. This is due to the fact that more units 

are kept in the experiment for a longer period of time in R3 followed by R1 and then R2. 

 

 

 

 

 

Scheme Min ̂  Max ̂  ̂  Asy  ˆV   Sim  ˆV   

R1 1.5945 7.2547 3.3064 0.8109 0.8631 

R2 1.3139 9.481 3.4278 1.0163 1.0735  

R3 1.6171 7.7873 3.3125 0.6656 0.6236 
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For n = 50 the three censoring patterns as discussed earlier comes out as 

R1 :(12, 9, 13, 6, 5)   

R2 :(25, 12, 2, 2, 4)    

R3 :(0, 0, 0, 0, 45).        

 

Table-2 gives the summary statistics of the maximum likelihood estimators for the three 

censoring patterns; with its observed asymptotic variance and simulated variance, in case 

of 1000 random samples generated for n = 50, θ = 3, m= 5 

 

Table - 2 

 

 

 

 

From the result of table - 2 we observe that the censoring pattern R3 produces the most 

precise estimate of θ followed by R1 and then R2. This is due to the fact that more units 

are kept in the experiment for a longer period of time in R3 followed by R1 and then R2. 

This shows that result obtained for small sample is same as the one obtained with large 

sample.  

3. Confidence Interval Estimation 

In this section we consider interval estimation of unknown parameter θ using the method 

of parametric bootstrap confidence interval and the method of r-level likelihood.  

 

 

 

Scheme Min ̂  Max ̂  ̂  Asy  ˆV θ  Sim  ˆV   

R1 1.5742 5.5017 3.0504 0.3436 0.3259 

R2 1.3285 5.7127 3.0504 0.4069 0.4103 

R3 1.6867 4.9825 3.0386 0.2837 0.2702 
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According to Davison and Hinkley (1997) a 100(1-α) % parametric bootstrap confidence 

interval for θ is given by 

2 2ˆ ˆ
,                           (4 .1 )ˆ ˆ(1 / 2 ) ( / 2 )boo t b oo t

 
   

 
   

  

 

where ˆ ( )boot p is the pth percentile of the simulated sample of 1000 estimates simulated 

using the observed value of ̂  of the given sample. 

 

Using the likelihood level r, the likelihood inequality can be solved in order to construct a 

likelihood interval for θ. From a graph of likelihood ratio= ˆ( ) / ( )L L  plotted against 

various values of θ, the likelihood interval for θ can be obtained for given level r, by 

drawing a horizontal line at ˆ( ) / ( )L L  =r and the corresponding likelihood interval will 

contain all values of θ below this line. For bootstrapping, we again have simulated 1000 

samples using the value of ̂ as a true value of θ and calculated ˆ ( )boot p for p = 0.025 

and p = 0.975 to obtain the 95% confidence interval in case of all the three censoring 

patterns and the values are as follows: 

 

 R1 R2 R3 

ˆ (0.025)boot  1.8607 1.9545 2.077 

ˆ (0.975)boot  5.456 5.872 5.0326 

 

 Using the result given in (4.1), parametric bootstrap confidence interval for θ in case of 

all the three censoring patterns R1, R2 and R3 is given by (1.269692, 4.849047),  

(1.414528, 5.635088), (1.042647, 4.394512) respectively whereas likelihood level r = 5 

confidence intervals of θ for the schemes R1, R2 and R3 are obtained as (1.7095, 3.23449),  
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1.7842, 4.7749) and (2.14599,5.1862) respectively. The graph of                                

ratio= ˆ(θ) / (θ)L L versus θ are shown in the following three figures 4.A, 4.B and 4.C 

respectively for censoring patterns R1, R2 and R3. The advantage of likelihood level 

confidence interval estimation is that it does not require large amounts of simulation as 

required in bootstrapping. 
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4.C
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Now instead of taking 1000 samples we took single sample and computed the values for 

different values of likelihood level for each censoring pattern to check the effect it creates 

on the confidence interval. We found that as the likelihood level is increased the 

confidence interval also increases for the three censoring patterns, i.e. the difference 

between the lower limit and upper limit increases. The result is shown in the table given 

below. 

For n = 20, θ = 3, m = 5 

 

Likelihood 

level (r ) 

           R1             R2             R3 

3 (2.63635, 5.66161) 

Diff : 3.02526 

(2.72244, 6.0743) 

Diff : 3.35186 

(2.50933, 5.1987) 

Diff : 2.68937 

5 (2.41711, 6.102605) 

Diff : 3.685495 

(2.48913, 6.5807) 

Diff : 4.09157 

(2.30711, 5.57799) 

Diff : 3.27088 

7 (2.29828, 6.36793) 

Diff : 4.06965 

(2.36323, 6.88705) 

Diff : 4.52382 

(2.197025, 5.805) 

Diff : 3.607975 
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Sprott (1973) has indicated that the distribution 
1/3ˆ ˆ =   

in small samples is much 

more closely approximated by a normal distribution than the distribution of ̂ . The 

distribution of ̂  is approximately normal with mean -1/3    and variance 

2

ˆ ˆV( ) = . ( )d Asy
d
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�                (4.2) 

 

 1/ 3ˆˆ     -8/3ˆ ˆV(θ)= V(θ)
1 θ̂ ×Asy
9

 
ˆ1.96 V(θ)  

R1 0.6712 0.0037 0.0073 

R2 0.6632 0.0042 0.0082 

R3 0.6708 0.0030 0.0059 

 

Using the result given in (4.2), confidence interval for θ (given by Sprott) in case of all 

the three censoring patterns R1, R2 and R3 is given by (1.1404, 1.1463), (1.1420, 1.1515), 

and (1.1390, 1.1457) respectively. 

 
 
 
 
 

REFERENCES 
 

Aggarwala,R. Progressive interval censoring: Some mathematical results with 

applications to inference. Communication in Statistics- Theory and Methods 2001, 

30(8&9), 1921-1935. 

 

Balakrishnan,N; Aggarwala, R. Progressive Censoring: Theory Methods and 

applications; Birkhauser publishers: Boston, 2000. 



                                                                             Original Article   
                    International Journal of Basic and Clinical Studies (IJBCS) 
                                  2013;1(1): 212-224.  Kaur S et al. 
 

 224 

 

 

Cohen, A.C. Progressive censored samples in life testing. Technometrics 1963, 5, 

327-329. 

 

Davison, A.C; Hinkley, D.V: Bootstrap Methods and their Applications, Cambridge 

University press. NewYork, 1997. 

 
Khatree, R. (1989): Characterization of Inverse Gaussian and Gamma distribution 
through their length biased distribution. IEEE Transactions on Reliability, 38(5), 610-
611. 
 

Martz, H.F. and Waller, R.A (1982): Bayesian Reliability Analysis. Wiley, New York. 
 

Sprott, D.A.; Normal likelihood and relation to a large sample theory of estimation, 

Biometrika 1973, 60, 457-465 

 


